Delhi Technological University formerly Delhi College of Engineering (Under Delhi Act 6 2009, Govt. of NCT of Delhi)

Course Outcomes of M.Sc. Mathematics

S. No	Course Code / Course Name /	Course Outcomes
	Semester	
		CO1: Identify different algebraic structures like groups, rings, fields etc. and to apply
	(140) (14404)	them in various science related problems.
	(MSMA101)	CO2: Apply concepts of abstract Algebra with various scientific tools to evolve new
1	Abstract Algebra	Ideas to solve practical problems.
	(M.Sc. Semester-	CO3: Analyze special type of ring viz. PID and design ring related applications
	1)	especially in the field of computer science.
		colve research based problems
		CO1: Integrate the different concepts and techniques of complex analysis in a
		comprehensible manner: thus, stimulating new research
		CO2: Identify the role and applications of complex analysis in mathematical modelling
	(MSMA102)	obvision and in many other areas of mathematics such as harmonic analysis and applied
	Complex Analysis	scientific computing
2	(M.Sc. Semester-	CO3: Apply appropriate complex analysis techniques in solving science and
	2)	engineering related problems arising in various fields such as mechanical, electrical and
	,	aerospace.
		CO4: Describe use of new techniques of complex analysis in applied mathematics and
		research oriented applications.
		CO1: Describe the concepts and properties of sets and categorize sequences and
		series as convergent, divergent or oscillatory.
		CO2: Construct metric spaces and acknowledge the space of functions in a better way.
<u> </u>	(MSMA103) Real Analysis (M.Sc. Semester-1)	CO3: Analize continuity and uniform continuity and apply their properties to create and
3		establish many real-life continuous functions.
1		CO4: Differentiate between convergence and uniform convergence of sequences and
		series of functions.
		CO5: Solve Riemann integrals and compute the integrals of numerical data derived
		from real life situations.
		CO1: Identify the techniques to form linear and non-linear of order one and higher order
	(MSMA104) Partial Differential Equations (M.Sc. Semester-2)	partial differential equations and evaluate the solutions by various methods.
		CO2: Classify and examine the second order partial differential equations into canonical
		form.
4		CO3: Describe the one and two dimensional heat equation and solve using method of
		separation of variables and Fourier series.
		co 4. Solve boundary value problem of Laplace and Poisson's equations, Neumann
		CO 5: Analyse the physical phenomena of one dimensional wave equation and solve
		using Fourier series
		CO1: Classify ordinary differential equations determine their order and degree, solve
		constant coefficient equations using various methods, identify existence and
		uniqueness of initial value problems of first and higher order.
		CO2: Identify ordinary and singular points, calculate power series solutions near
	(MSMA105) Ordinary Differential Equations (M.Sc.	ordinary point and regular singular point for important classes of ordinary differential
		equations including Legendre equation and Bessel's equations.
		CO3: Express higher-order linear differential equations as first-order systems in normal
		form, solve systems of homogeneous first-order linear differential equations using
5		matrix methods, solve systems of non-homogeneous linear first-order differential
		equations

	Semester-1)	CO4: Apply Sturm theory, identify oscillatory and non-oscillatory differential equations, estimate the existence and asymptotic behaviour of the eigenvalues, and the corresponding qualitative theory of the eigenfunctions for Sturm–Liouville boundary value problems CO5: Sketch trajectories associated with, calculate critical points of, and express
		and non-linear systems of equations
		Mathematics.
6	(MSMA106) Topology (M.Sc. Semester-2)	CO2: Integrate different techniques of topology in an effective manner to arrive at new and innovative concepts.
		CO3: Develop the ability to think abstractly and demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from topology.
		CO4: Formulate, solve and analyse interdisciplinary current world problems for higher study and research.
	(MSMA107)	CO1: Recognize various algebraic structures that can be employed in the fields of engineering and sciences.
7	Discrete	CO2: Formulate mathematical problems via the formal language of propositional logic and predicate logic.
/	(M.Sc. Semester-	CO3: Deduce analytically the problem-solving situations in related areas of Theory in Computer Science and Graph Theory.
	')	CO4: Apply the skills gained to formulate, solve and analyse interdisciplinary real-world problems for higher study and research.
		CO1: Communicate mathematical statements, ideas, results, correct use of mathematical definitions, terminology and symbolism.
	(MSMA108)	CO2: Demonstrate the understanding and the applications of vector spaces, linear transforms, change of basis, eigenvalues and eigenvectors.
8	(M.Sc. Semester-	CO3: Demonstrate the understanding and the applications of diagonalization, various canonical forms and inner product spaces.
	2)	CO4: Apply Gram-Schmidt orthonormalization process and identify various linear operators (Unitary, Adjoint, Hermitian, Skew-Hermitian and Normal) and their applications.
		CO1: Formulize probability model using various approaches to probability for a given random experiment and skill in R/SPSS for presenting and analyzing the given problem.
	(MSMA109)	CO2: Analyze a given random situation using concepts of expectation, statistical inequalities, law of large numbers and regression analysis.
9	Mathematical Statistics (M.Sc. Semester-1)	CO3: Implement standard discrete and continuous probability distributions and their applications
		CO4: Perform large and small sample testing and their applications in real-world problems.
		CO5: Draw inferences about a population from analyzing a sample drawn from that population using estimation and hypothesis testing.
	(MSMA110) Numerical Analysis (M.Sc. Semester-2)	CO1: Describe a basic understanding of the derivation, analysis, and use of numerical methods, along with an understanding of finite precision arithmetic and the conditioning and stability of the various problems and methods.
		CO2: Identify, develop and apply the appropriate numerical techniques for a problem, interpret the results, and accuracy.
10		CO3: Solve systems of linear equations using least squares problems, and other methods.
		CO4: Interpret and solve problems related to interpolation, approximation, and integration of functions.
		CO5: Solve initial values problems, Boundary value problems governed by ordinary differential equations.
		CO1: Apply good programming principles to the design and implementation of C
	(MSMA111) Programming Lab- I (M.Sc. Semester- 1)	CO2: Demonstrate an understanding of primitive data types, values, operators, and expressions in C
11		CO3: Design, implement, debug, and test programs using the fundamental elements of C
		CO4: Design and implement code that includes the reuse of both existing code and calling functions in the C/C++ libraries

		CO5: Describe the procedural and OOPs with concepts of classes, functions, data and objects and demonstrate the use of various OOPs concepts with the help of programs
	(MSMA112)	CO1: Write loops and decision statements in Python.
	Programming Lab-	CO2: Design Python functions to facilitate code reuse.
12	II (M.Sc. Semester-	CO3: Integrate lists, tuples, and dictionaries in Python programs.
	2)	CO4: Apply exception handling in Python applications for error handling.
	,	CO5: Design object-oriented programs with Python classes.
		CO1: Know different operating systems and basic commands
	(MSMA114)	CO2: Possess the knowledge of programming in C language
13	Fundamentals of Computer (M.Sc.	problems
15		CO4: Solve basic computational problems with C language. MATLAB. Mathematica and
	Semester-2)	SPSS.
		CO5: Create good documentation using MS Office tools and Latex.
		CO1: Describe how functional analysis uses and unifies the concept of vector spaces
		and the theory of metric spaces.
	(140) (400) (1)	CO2: Explain the normed linear spaces which are not inner product spaces.
	(MSMA201)	CO3: Describe and apply fundamental theorems for normed linear spaces and Banach
14	Analysis (M Sc	spaces such as Hann-Banach theorem, the open mapping theorem, the closed graph
	Semester-3)	CO4: Differentiate between Banach space and Hilbert space and recognize the basic
		properties of Hilbert spaces.
		CO5: Describe the fundamentals of spectral theory, and recognize its power in different
		applications.
		CO1: Solve linear programming problems using appropriate techniques and
		optimization solvers, interpret the results obtained.
		CO2: Analyze any real life system with limited constraints and depict it in a model form.
	(MSMA203)	CO3: Determine optimal strategy for Minimization of Cost of shipping of products from
15	Operations	source to Destination/ Maximization of profits of shipping products using various
	Research (M.Sc.	methods, Finding initial basic feasible and optimal solution of the Transportation
	Semester-3)	problems
		cotimal solutions using various operational research techniques
		CO5: Employ the analytical and practical skills in real life acquired during the course.
		appropriate tools and components.
	(MSMA204)	CO2: Evaluate the outcomes of the project qualitatively and quantitatively.
16	Dissertation-II (M.Sc. Semester-	CO3: Apply principles of ethical behaviour, collaborative engagement, socially
		responsible behavior, and respect for individuals for effective team management.
	-)	CO4: Prepare, and communicate the work in the form of a research article and present
		the same.
		CO1: Identify complex engineering/real-life problems, and explore creative avenues of
	(MSMA205) Dissertation-I (M.Sc. Semester- 3)	CO2: Compare contract and criticize the existing work for the problem under
		consideration.
17		CO3: Develop a methodology and design strategy to implement the project using
		appropriate tools and components
		CO4: Acquire, articulate, and convey observations and conclusions using a verbal and
		non-verbal methods of communication.
		CO1: Describe the financial market and various terminologies used. List the
	(MSMA206) Financial	assumptions for mathematical modelling of financial markets. Categorize the types of
		CO2: Compute the risk and return attached with risky and risk free instruments. Bright
		of Bonds. Forward, and Future and apply to real problem
		CO3: Do the option pricing using various models. Effectively compute the volatility and
18	Mathematics	its impact on derivative pricing.
	(M.Sc. Semester- 4)	CO4: Define the stochastic processes, and calculus for forming and solving stochastic
		differential equations. Apply the Stochastic calculus in option pricing, and other real
		world and engineering problem.

		CO5: Explain the portfolio and to compute the risk and return attached with it. Construct a multi asset portfolio with minimum risk and maximum return. Use the skill for financial management.
19	(MSMA207) Stochastic process (M.Sc. Semester-3)	CO1: Classify the stochastic process associated with a random phenomena and visualise that using R/SPSS skills.
		CO2: Apply the skill of random walk to analyse suitable physical situation. CO3: Analyse Markovian model, both discrete and continuous, and Poisson and birth and death processes.
		CO4: Manipulate a non-Markovian model using appropriate techniques. CO5: Model the physical situation for multidisciplinary problems/fields to suitable random process and analyse that for better project management and finance.
	(MSMA208) Data Mining (M.Sc. Semester-4)	CO1: Identify the scope and necessity of Data Mining for the society.
		CO2: Apply various tools of Data Mining and their techniques on real world problems.
		CO3: Design various algorithms specialized for data mining tasks.
20		CO4: Develop further interest in research and design of new Data Mining techniques.
		CO5: Analyze and justify the use of a particular data mining technique for a problem.
		CO6: Compare the various approaches to data warehousing and data mining implementations.
		CO1: Design efficient algorithms for real-life problems, using the techniques learned as building block and identify the limitations in algorithm design for solving it.
	(MSMA209) Analysis and	CO2: Argue and justify the correctness of algorithm design and analyze the running time of algorithms using asymptotic analysis.
21	Design of Algorithms (M.Sc. Semester-3)	CO3: Describe different paradigms of algorithm design, such as Divide & Conquer, Greedy, Dynamic Programming, etc, and predict when an algorithmic design situation calls for it.
		CO4: Compare the notion of tractable and intractable problems and develop algorithms for computationally intractable problems.
		CO5: Solve the inter-disciplinary real-world problems including sorting problems, trees and graphs problems, and recurrence relations
		CO1: Define and use optimization concepts to model the real-world applications as an optimization problem.
		CO2: Apply optimization methods to engineering problems, including developing a
		model, defining an optimization problem, applying optimization methods, exploring the
	(MSMA210)	CO3: Formulate continuous problems into unconstrained and constrained optimization
22	Optimization Techniques (M Sc	problems on the basis of the conditions provided .
	Semester-4)	CO4: Identify computing derivatives methods for direct and adjoint cases.
	,	world problem and justify the technique for solving it.
		CO6: Employ basic optimization algorithms in a computational setting and apply
		existing optimization software packages to solve and analyze the inter- disciplinary real-
		world problems and for higher study and research.
	(MSMA211) Number Theory (M.Sc. Semester- 3)	CO2: Solve linear congruence equations. Apply the congruence properties in finding
		CO3: Describe various arithmetical functions like Euler phi function and apply these in
23		simplifying various arithmetical problems.
		numbers. Describe discrete logarithms.
		CO5: Analyse relation between Quadratic residue and Legendre's symbols and solve quadratic congruences.
24	(MSMA212) Approximation Theory (M.Sc. Semester-4)	CO1: Describe the concepts and properties of algebraic and trigonometrical polynomials and Bernstein polynomials.
		CO2: Construct various linear positive operators and analyse their approximation properties using different tools.
		CO3: Analyze conditions for convergence of linear positive operators and find order of approximation of functions.
		CO4: Describe error estimates with Jackson's, Dini-Lipschitz and Stone Weierstrass

		CO5: Demonstrate the understanding of K-functional and its relationship with modulus of smoothness.
25	(MSMA213) Mathematical Modelling and Simulation (M.Sc. Semester-3)	 CO1: Demonstrate an understanding of concepts of modeling and simulation, by extracting the necessary and relevant information regarding the problem. CO2: Construct various mathematical models of real world problems and perform their stability analysis. CO3: Solve the mathematical models using mathematical techniques and with the help of various techniques. CO4: Operate qualitative analysis of the non-linear mathematical models. CO5: Analyze and understand the numerical and statistical techniques.
26	(MSMA214) General Relativity and Cosmology (M.Sc. Semester- 4)	CO1: Identify the initial step to get a better understanding of different types of tensors and some important mathematical properties of tensors and transformation.
		CO2: Demonstrate an understanding of metric tensor, special theory of relativity and concept of space and time. CO3: Explain the general theory of relativity, Einstein field equations. CO4: Calculate the Schwarzchild exterior solution and Birkhoff solution.
		describing the geometry of the universe.
		engineering and sciences.
		CO2: Apply the theory and techniques covered in the course to solve variational problems.
27	(MSMA215) Calculus of Variation (M.Sc.	CO3: Discuss the problem on conditional extremum, variation problem of moving boundaries, isoperimetric problem and Sturm Liouville problem; analyse these problems.
	Semester-3)	CO4: Describe variational methods such as Rayleigh-Ritz method, Galerkin method, method of Kantorovich. Trefftz method.
		CO5: Derive the Euler-Lagrange equations for variational problems.
		Hamiltonian's canonical equation.
		CO1: Apply mathematical thinking and analytic process that involves Variational Formulations.
	(MSMA216) Finite Element Method (M.Sc. Semester- 4)	CO2: Formulate and solve two point boundary value problems, initial value problems in
28		CO3: Implement numerical methods (Variational methods) to solve problems related to solid mechanics
		CO4: Implement the formulation techniques to solve 2-dimensional problems using triangle and quadrilateral elements
		CO5: Solve complex problems having irregular geometry.
		CO1: Integrate core theoretical knowledge of graph theory to solve problems.
	(MSMA217) Graph Theory (M.Sc. Semester- 3)	CO2: Apply theories and concepts to test and validate intuition and independent mathematical thinking in problem solving.
29		CO3: Recognize the applied problems occurring in real world and use the concepts of graph theory to analyse and solve them.
		CO4: Formulate interdisciplinary real-world problems in graph theoretic terms for higher study and research.
	(MSMA218) Machine Learning (M.Sc. Semester- 4)	CO1: Demonstrate an appreciation for what is involved in Learning models from data.
30		CO2: Describe a wide variety of learning algorithms including Supervised Learning, Unsupervised Learning, Reinforcement Learning.
		CO3: Evaluate models generated from data using various quantitative and qualitative methods.
		CO4: Apply different learning algorithms to a real problem
		CO5: Present the expected accuracy that can be achieved by applying the models.
		CO1: Identify the fundamental concepts and general principles associated with univalent functions in a structured manner to encourage research
		CO2: Analyze the geometric properties of univalent functions, apply them to interpret
	(MSMA222)	related theorems and develop proof techniques.

31	Univalent Function Theory (M.Sc. Semester-4)	CO3: Illustrate the concepts of subordination, provide an extension of real-line inequalities and use it as a tool for problem solving, thus, formulating several complex-inequalities.
		CO4: Demonstrate subclasses of univalent functions characterized by the conditions involving derivatives and investigating the properties of these subclasses.
		CO1: Classify the various classical encryption techniques.
	(MSMA223) Cryptography and Coding Theory (M.Sc. Semester- 3)	CO2: Describe and analyse modern block ciphers.
32		CO3: Describe and analyse public key cryptosystems and key exchange algorithms.
		CO4: Construct error correcting codes using various methods, theory and principles.
		CO5: Describe and analyse convolution codes and their decoding.
		CO1: Classify "vagueness" and "uncertainty" in the systematic approach.
		CO2: Analyse different applications based on fuzzy model, representing vague
	(MSMA224)	Knowledge and describe the impact on popular dynamical systems.
33	Fuzzy Sets and	uncertain environment.
	(M.Sc. Semester-	CO4: Apply relevant software packages to formulate, solve and analyze problems for higher study and research.
	+)	CO5: Design fuzzy-logic based controllers and list their unique characteristics.
		CO6: Apply analytical and practical skills gained during the course to real life and enginnering problems.
		CO1: Classify the central forces from other types of forces and apply it to describe the
		planetary motion.
		CO2: Describe moment and product of inertia. Explain the basic concepts and
	(MSMA225)	underlying principle of the dynamics of rigid bodies.
34	Classical	CO3: Describe the differential equations and other advanced mathematics in the
	Mechanics (M.Sc.	solution of the problems of dynamical systems.
	Semester-3)	CO4: Deduce Lagrange's and Hamilton's equation and describe the motion of a
		CO5: Explain generating function and canonical transformation. Describe Hamilton-
		Jacobi equation of motion.
		CO1: Determine the principal theoretical issues concerning the solving of partial
		differential equations in higher dimensions, classify well posed problems and classical
		solutions
		CO2: Differentiate between four important linear partial differential equations in R^n-
		transport equation, Laplace equation, Heat equation and Wave equation, construct
		representation formula for transport equation, deduce fundamental solution for Laplace
	(MSMA220) Advanced Partial Differential Equations (M.Sc. Semester-4)	equation and representation formula using Green's functions, apply properties of
		CO3: Define physical significance of heat equation, deduce fundamental solution for
35		heat equation, solve homogeneous and non-homogeneous heat equation in higher
		dimensions, apply mean-value formula and maximum principle, estimate the solutions
		of the heat equation
		CO4: Interpret physical significance of wave equation, identify the solution of wave
		equation in one and higher dimensions, distinguish between d'Alembert's solution (n=1)
		and solution through spherical means ($n\geq 2$), solve non-homogeneous problem using
		Dunamers principle, identify the domain of dependence
		construct representation formulae for nonlinear equations, devise new solutions from
		envelopes, apply method of characteristics to solve nonlinear equations
	(MSMA219) Database Management System (M.Sc. Semester-3)	CO1: Describe the fundamental elements of relational database management systems
36		and related concepts.
		CO2: Design ER-models to represent real-life database applications. Explain and apply
		the concepts to design the relational database from the ER-model and formulate SQL
		queries for implementation and maintenance of the database. $CO3$: Improve the database design by performing the concept of normalization
		CO4: Apply basic database storage structures and access techniques like file and page
		organizations, indexing methods including B tree, and hashing for optimal database
		organization.
		CO5: Describe and apply the transaction processing and concurrency control
		techniques.

37	(MSMA202) Measure and Integration (M.Sc. Semester-2)	CO1: Define and identify measurable/non-measurable sets; explain the construction of Borel set and Cantor ternary set.
		CO2: Describe the notion and properties of measurable functions and determine problems related to different kinds of convergence, like convergence in measure, pointwise convergence, almost everywhere convergence and almost everywhere uniform convergence.
		CO3: Describe the main ideas of the proofs for Lusin's theorem, Frechet theorem and
		F. Riesz's theorem on convergence almost everywhere.
		CO4: Construct and compute Lebesgue integrals; describe and apply Lebesgue
		monotone and dominated convergence theorems and Fatou's Lemma in solving
		problems.
		CO5: Analyze Lp spaces and describe their properties.
		CO6: Apply Hölder's inequality, Minkowski's inequality and Schwartz's inequality in
		solving problems; describe Riesz-Fischer theorem.